快速访问

查看PDF

文章信息

参考文献

[1]WYATT B C, ROSENKRANZ A, ANASORI B. 2D MXenes: Tunable Mechanical and Tribological Properties [J]. Advanced Materials, 2021, 33 (17): 2007973. DOI: 10.1002/adma.202007973.
[2]ZHAO Z, WANG S, WAN F, et al. Scalable 3D Self-Assembly of MXene Films for Flexible Sandwich and Microsized Supercapacitors [J]. Advanced Functional Materials, 2021, 31 (23): 2101378. DOI: 10.1002/adfm.202101378.
[3]GHANBARI R, WU D, HEYNDERICKX P M. Fabrication of MXene-based membranes and their application in per- and polyfluorinated substances removal: Comparison with commercial membranes, challenges, and future improvements [J]. Coordination Chemistry Reviews, 2025, 523: 215487. DOI: 10.1016/j.ccr.2025.215487.cial membranes, challenges, and future improvements[J]. Coordination Chemistry Reviews, 2025, 523
[4]PENG L, HAN Y, WANG M, et al. Multifunctional Macroassembled Graphene Nanofilms with High Crystallinity [J]. Advanced Materials, 2021, 33(49): 2104195. DOI:10.1002/adma.202104195.
[5]WU H, LIU C, CHU S, et al. Integrated super-engineering polymeric electromagnetic interference shielding films withstanding the extreme environments [J]. Chemical Engineering Journal, 2023, 472: 144789. DOI: 10.1016/j.cej.2023.144789.
[6]LI B, WU N, YANG Y, et al. Graphene Oxide-Assisted Multiple Cross-Linking of MXene for Large-Area, High-Strength, Oxidation-Resistant, and Multifunctional Films [J]. Advanced Functional Materials, 2022, 33(11): 2113256. DOI:10.1002/adfm.202113256.
[7]WAN Y J, ZHU P L, YU S H, et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy [J]. Carbon, 2017, 122: 74-81. DOI: 10.1016/j.carbon.2017.06.041.
[8]ZHOU Z, LIU Y, LAN S, et al. Optimized energy storage performance in bilayer heterogeneous films [J]. Scripta Materialia, 2024, 243: 115987. DOI: 10.1016/j.scriptamat.2024.115987.
[9]DAS P, ZHANG L, ZHENG S, et al. Rapid fabrication of high-quality few-layer graphene through gel-phase electrochemical exfoliation of graphite for high-energy-density ionogel-based micro-supercapacitors [J]. Carbon, 2022, 196: 203-212. DOI: 10.1016/j.carbon.2022.04.056.
[10]XIE G, BAI H, MIAO G, et al. The Applications of Ultra-Thin Nanofilm for Aerospace Advanced Manufacturing Technology [J]. Nanomaterials, 2021, 11 (12): 3245. DOI: 10.3390/nano11123245.
[11]LI R, ZHANG L, SHI L, et al. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material [J]. ACS Nano, 2017, 11 (4): 3752-3759. DOI: 10.1021/acsnano.6b08415.
[12]Graphical Abstract: Angew. Chem. Int. Ed. 37/2024 [J]. Angewandte Chemie International Edition, 2024, 63 (37): e202483711. DOI: 10.1002/anie.202483711.
[13]MATHIS T S, MALESKI K, GOAD A, et al. Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene [J]. ACS Nano, 2021, 15 (4): 6420-6429. DOI: 10.1021/acsnano.0c08357.
[14]LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance [J]. Proceedings of the National Academy of Sciences, 2014, 111 (47): 16676-16681. DOI: 10.1073/pnas.1414215111.
[15]CHAUDHARI N K, JIN H, KIM B, et al. MXene: an emerging two-dimensional material for future energy conversion and storage applications [J]. Journal of Materials Chemistry A, 2017, 5 (47): 24564-24579. DOI: 10.1039/C7TA09094C.
[16]ZHANG J, KONG N, UZUN S, et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2T MXene Films with Outstanding Conductivity [J]. Advanced Materials, 2020, 32 (23): 2001093. DOI: 10.1002/adma.202001093.
[17]ZANG X, WANG J, QIN Y, et al. Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction [J]. Nano-Micro Letters, 2020, 12 (1): 77. DOI: 10.1007/s40820-020-0411-9.
[18]ZHOU J, YU J, SHI L, et al. A Conductive and Highly Deformable All-Pseudocapacitive Composite Paper as Supercapacitor Electrode with Improved Areal and Volumetric Capacitance [J]. Small, 2018, 14 (51): 1803786. DOI: 10.1002/smll.201803786.
[19]SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes) [J]. Science, 2016, 353 (6304): 1137-1140. DOI: 10.1126/science.aag2421.
[20]侯淑萍, 韩艺婷, 莫美新, 等. 二维材料MXene的制备方法、性能与应用探究 [J]. 纳米技术, 2024, 14 (2): 23-36.
[21]HOU S, HAN Y, MO M, et al. Study on preparation, properties and application of two-dimensional material MXene [J]. Nanotechnology, 2024, 14 (2): 23-36. (in Chinese).
[22]吴晓娜, 汪宜宇, 赵凯. MXene基复合水凝胶在修复感染创面中的研究进展 [J]. 复合材料学报, 2024, 41(7): 3427-3441.
[23]WU X, WANG Y, ZHAO K. Research progress of MXene-based composite hydrogels in the repair of infected wounds [J]. Journal of Composites, 2024, 41(07): 3427-3441. (in Chinese).
[24]LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes [J]. Advanced Electronic Materials, 2016, 2 (12): 1600255. DOI: 10.1002/aelm.201600255.
[25]WANG Y, WANG X, LI X, et al. Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance [J]. Advanced Functional Materials, 2019, 29 (14): 1900326. DOI: 10.1002/adfm.201900326.
[26]WANG J, KANG H, MA H, et al. Super-Fast Fabrication of MXene Film through a Combination of Ion Induced Gelation and Vacuum-Assisted Filtration [J]. Engineered Science, 2021, 15: 57-66. DOI: 10.30919/es8d527.
[27]KEDAMBAIMOOLE V, KUMAR N, SHIRHATTI V, et al. Laser-Induced Direct Patterning of Free-standing Ti3C2–MXene Films for Skin Conformal Tattoo Sensors [J]. ACS Sensors, 2020, 5 (7): 2086-2095. DOI: 10.1021/acssensors.0c00647.
[28]XIE J, JIANG J, DAVOODI P, et al. Electrohydrodynamic Atomization: A Two-Decade Effort to Produce and Process Micro-/Nanoparticulate Materials [J]. Chemical Engineering Science, 2015, 125: 32-57. DOI: 10.1016/j.ces.2014.08.061.
[29]WU Y, CLARK R L. Electrohydrodynamic Atomization: A Versatile Process for Preparing Materials for Biomedical Applications [J]. Journal of Biomaterials Science, Polymer Edition, 2008, 19 (5): 573-601. DOI: 10.1163/156856208784522089.
[30]CHERNIKOVA V, SHEKHAH O, EDDAOUDI M. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method [J]. ACS Applied Materials & Interfaces, 2016, 8 (31): 20459-20464. DOI: 10.1021/acsami.6b04858.
[31]PHAM H Q, HUYNH T T. Applications of Doped-MXene-Based Materials for Electrochemical Energy Storage [J]. Coordination Chemistry Reviews, 2024, 517: 216039. DOI: 10.1016/j.ccr.2024.216039.
[32]ZHANG C, ANASORI B, SERAL-ASCASO A, et al. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance [J]. Advanced Materials, 2017, 29 (36): 1702678. DOI: 10.1002/adma.201702678.
[33]YUN T, KIM H, IQBAL A, et al. Electromagnetic Shielding of Monolayer MXene Assemblies [J]. Advanced Materials, 2020, 32 (9): 1906769. DOI: 10.1002/adma.201906769.
[34]ZHANG M, WANG X X, CAO W Q, et al. Electromagnetic Functions of Patterned 2D Materials for Micro–Nano Devices Covering GHz, THz, and Optical Frequency [J]. Advanced Optical Materials, 2019, 7 (19): 1900689. DOI: 10.1002/adom.201900689.
[35]SHEN B, ZHAI W, ZHENG W. Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding [J]. Advanced Functional Materials, 2014, 24 (28): 4542-4548. DOI: 10.1002/adfm.201400079.
[36]KIM S, OH J S, KIM M G, et al. Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition [J]. ACS Applied Materials & Interfaces, 2014, 6 (20): 17647-17653. DOI: 10.1021/am503893v.
[37]LIANG W, WU J, ZHANG S, et al. Construction of PI-MXene-MWCNT Nanocomposite Film Integrating Conductive Gradient with Sandwich Structure for High-Efficiency Electromagnetic Interference Shielding in Extreme Environments [J]. Carbon, 2024, 228: 119895. DOI: 10.1016/j.carbon.2024.119895.
[38]ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces, 2019, 6 (6): 1802040. DOI: 10.1002/admi.201802040.
[39]GREGER M, LANDBERG T. Removal of PFAS from Water by Aquatic Plants [J]. Journal of Environmental Management, 2024, 351: 119895. DOI: 10.1016/j.jenvman.2024.119895.
[40]LEI X, LIAN Q, ZHANG X, et al. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities [J]. Environmental Pollution, 2023, 321: 121138. DOI: 10.1016/j.envpol.2023.121138.
[41]ZHANG W, JI X X, MA M G. Emerging MXene/cellulose composites: Design strategies and diverse applications [J]. Chemical Engineering Journal, 2023, 458: 141402. DOI: 10.1016/j.cej.2023.141402.
[42]ZHAO J, FAN Y, ZHANG J, et al. Electrosorption approach removing PFOA from wastewater using a MXene-polyaniline film [J]. Journal of Water Process Engineering, 2024, 62: 105415. DOI: 10.1016/j.jwpe.2024.105415.
[43]MA Q, GAO J, MOUSSA B, et al. Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes [J]. ACS Applied Materials & Interfaces, 2023, 15 (24): 29149-29159. DOI: 10.1021/acsami.3c04544.
[44]YANG H, HAN M, ZHANG W, et al. High performance mixed-dimensional assembled MXene composite membranes for molecular sieving [J]. Journal of Membrane Science, 2024, 698: 122606. DOI: 10.1016/j.memsci.2024.122606.
[45]SUN M, WANG X, WINTER L R, et al. Electrified Membranes for Water Treatment Applications [J]. ACS ES&T Engineering, 2021, 1 (4): 725-752. DOI: 10.1021/acsestengg.1c00015.
[46]XUE S, GAO J, LIU C, et al. Unveiling the potential of nanobubbles in water: Impacts on tomato's early growth and soil properties [J]. Science of The Total Environment, 2023, 903: 166499. DOI: 10.1016/j.scitotenv.2023.166499.
[47]PENG L, FANG Z, ZHU Y, et al. Holey 2D Nanomaterials for Electrochemical Energy Storage [J]. Advanced Energy Materials, 2018, 8 (9): 1702179. DOI: 10.1002/aenm.201702179.
[48]LI Q, LI H, XIA Q, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry [J]. Nature Materials, 2021, 20 (1): 76-83. DOI: 10.1038/s41563-020-00868-2.
[49]LI H, HU Z, XIA Q, et al. Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium-Ion Batteries [J]. Advanced Materials, 2021, 33 (12): 2006629. DOI: 10.1002/adma.202006629.
[50]ZHAO Q, ZHU Q, MIAO J, et al. Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries [J]. Small, 2019, 15 (51): 1904293. DOI: 10.1002/smll.201904293.
[51]XIE X, ZHAO M Q, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices [J]. Nano Energy, 2016, 26: 513-523. DOI: 10.1016/j.nanoen.2016.06.005.
[52]XU M, LEI S, QI J, et al. Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant [J]. ACS Nano, 2018, 12 (4): 3733-3740. DOI: 10.1021/acsnano.8b00954.
[53]ZHENG W, ZHANG P, CHEN J, et al. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries [J]. Journal of Materials Chemistry A, 2018, 6 (8): 3543-3551. DOI: 10.1039/C7TA10035H.
[54]LIANG L, YAO C, YAN X, et al. High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film [J]. Journal of Materials Chemistry A, 2021, 9 (43): 24560-24570. DOI: 10.1039/D1TA06614E.
[55]YAN J, REN C E, MALESKI K, et al. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance [J]. Advanced Functional Materials, 2017, 27 (30): 1701264. DOI: 10.1002/adfm.201701264.
[56]LUO W, LIU Q, ZHANG B, et al. Binder-free flexible Ti3C2Tx MXene/reduced graphene oxide/carbon nanotubes film as electrode for asymmetric supercapacitor [J]. Chemical Engineering Journal, 2023, 474: 145553. DOI: 10.1016/j.cej.2023.145553.
[57]GUAN K, DONG L, XING Y, et al. Structure and surface modification of MXene for efficient Li/K-ion storage [J]. Journal of Energy Chemistry, 2022, 75: 330-339. DOI: 10.1016/j.jechem.2022.08.020.
[58]TIAN Y, AN Y, FENG J. Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2019, 11 (10): 10004-10011. DOI: 10.1021/acsami.9b01233.
[59]MA Z, ZHOU X, DENG W, et al. 3D Porous MXene (Ti3C2)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage [J]. ACS Applied Materials & Interfaces, 2018, 10 (4): 3634-3643. DOI: 10.1021/acsami.7b17384.
[60]YONG B, WANG Y, ZHAO H, et al. A Trifunctional Hydroxylated Borophene-Mediated MXene Enabled Super-Stable and Fast-Kinetics Interface Storage [J]. Advanced Functional Materials, 2024, 34 (32): 2401234. DOI: 10.1002/adfm.202401234.
[61]ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) [J]. Chemistry of Materials, 2017, 29 (18): 7633-7644. DOI: 10.1021/acs.chemmater.7b02847.
[62]CHEN X, KONG Z, LI N, et al. Proposing the Prospects of Ti3CN Transition Metal Carbides (MXenes) as Anodes of Li-Ion Batteries: A DFT Study [J]. Physical Chemistry Chemical Physics, 2016, 18 (48): 32937-32943. DOI: 10.1039/C6CP06018H.

版权与开放获取声明

作为一本开放获取的学术期刊,所有文章均遵循 Creative Commons Attribution 4.0 International License (CC BY 4.0) 协议发布,允许用户在署名原作者的前提下自由共享与再利用内容。所有文章均可免费供读者和机构阅读、下载、引用与传播,EWA Publishing 不会通过期刊的出版发行向读者或机构收取任何费用。