快速访问
文章信息
参考文献
[1]SHEN X, ZHANG X Q, DING F, et al. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175.
[2]CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 16013.
[3]ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308.
[4]KIM S, CHOI S J, ZHAO X, et al. Lithium-metal batteries: from fundamental research to industrialization[J]. Advanced Materials, 2023, 35(43): 2206625.
[5]PEREA A, DONTIGNY M, ZAGHIB K. Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte[J]. Journal of Power Sources, 2017, 359: 182-185.
[6]SUN H, ZHU G, ZHU Y, et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Advanced Materials, 2020, 32(26): 2001741.
[7]TANG Y, ZHANG Q, LUO S, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy & Environmental Science, 2021, 14(2): 602-642.
[8]LUO S, WANG Z, LI X, et al. Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries[J]. Chemical Engineering Journal, 2021, 421: 127771.
[9]MA Y, WAN J, YANG Y, et al. Li salt initiated in-situ polymerized solid polymer electrolyte: New insights via in-situ electrochemical impedance spectroscopy[J]. Chemical Engineering Journal, 2022, 429: 132483.
[10]TAHERI P, GHASEMI S, KROL R, et al. In situ study of buried metal-polymer interfaces exposed to an aqueous solution by an integrated ATR-FTIR and electrochemical impedance spectroscopy system[J]. The Journal of Physical Chemistry C, 2013, 117(40): 20826-20832.
[11]GARCIA-CALVO O, HERRERO J, GARDEA A, et al. Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries[J]. Electrochimica Acta, 2016, 220: 587-594.
[12]ZHU X, LI W, CHEN L, et al. Constructing resilient cross-linked network toward stable all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(17): 2304244.
[13]ZHOU R, ZHAO B, YUE B. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity[J]. Applied Surface Science, 2008, 254(15): 4701-4707.
[14]LIN S, YANG H, LI J, et al. Redox behavior of active PdOx species on (Ce, Zr)xO2-Al2O3 mixed oxides and its influence on the three-way catalytic performance[J]. Chemical Engineering Journal, 2014, 247: 42-49.
[15]YANG H, LIU Q, WANG J, et al. PDOL-based solid electrolyte toward practical application: opportunities and challenges[J]. Nano-Micro Letters, 2024, 16(1): 127.
[16]DU Y, ZHANG W, LI X, et al. Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries[J]. Energy Storage Materials, 2023, 56: 310-318.
[17]LIU Q, WANG Y, ZHANG L, et al. Molecular design for in-situ polymerization of hybrid polymer electrolyte enables high-voltage and high-energy-density quasi-solid-state lithium metal batteries[J]. Energy Storage Materials, 2025, 104277.
[18]FAN W, LI J, ZHANG K, et al. Elucidating cooperative active sites and methane combustion pathways on dynamic PdOx surfaces[EB/OL]. SSRN, 2024. DOI: 10.2139/ssrn.5202740.
[19]KONG W J, SUN Y, LI H, et al. From liquid to solid-state batteries: Li-rich Mn-based layered oxides as emerging cathodes with high energy density[J]. Advanced Materials, 2024, 36(14): 2310738.
[20]MAO K, ZHANG G, ZHANG Y, et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors[J]. Nano Energy, 2022, 103: 107791.
[21]LI W, ZHANG X, LIU Y, et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior[J]. Angewandte Chemie International Edition, 2022, 61(6): e202114805.
[22]MI Y Q, WANG J, LI X, et al. In situ polymerized 1,3-dioxolane electrolyte for integrated solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2023, 62(12): e202218621.
[23]RONG S, ZHANG P, LIU Y, et al. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin[J]. Analytica Chimica Acta, 2022, 1196: 339545.
[24]MIRHADI E, MASOUDI A, KEYHANVAR N, et al. Redox-sensitive doxorubicin liposome: A formulation approach for targeted tumor therapy[J]. Scientific Reports, 2022, 12(1): 11310.
[25]NICOLAU B G, PETROV V, FILLER M A, et al. Interfacial processes of a model lithium ion battery anode observed, in situ, with vibrational sum-frequency generation spectroscopy[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10227-10233.
[26]XIE Z, ZHANG B, GE Y, et al. Effects of functional groups of graphene oxide on the electrochemical performance of lithium-ion batteries[J]. RSC Advances, 2015, 5(109): 90041-90048.
[27]LIU Q, WANG L, ZHANG X, et al. Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries[J]. Chinese Physics B, 2020, 29(4): 048202.
版权与开放获取声明
作为一本开放获取的学术期刊,所有文章均遵循 Creative Commons Attribution 4.0 International License (CC BY 4.0) 协议发布,允许用户在署名原作者的前提下自由共享与再利用内容。所有文章均可免费供读者和机构阅读、下载、引用与传播,EWA Publishing 不会通过期刊的出版发行向读者或机构收取任何费用。