快速访问
文章信息
参考文献
[1]DAS A K, GOSWAMI P, ANAND S, et al. Design of secure and lightweight authentication protocol for wearable devices environment[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 22(4): 1310-1322.
[2]COELHO Y L, SILVA B M, MOREIRA A, et al. A lightweight framework for human activity recognition on wearable devices[J]. IEEE Sensors Journal, 2021, 21(21): 24471-24481.
[3]BAYOUMY K, GABER M, ELTAYEB A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward[J]. Nature Reviews Cardiology, 2021, 18(8): 581-599.
[4]ADAPA A, AHN J W, KIM K, et al. Factors influencing the adoption of smart wearable devices[J]. International Journal of Human-Computer Interaction, 2018, 34(5): 399-409.
[5]ZHANG Y, WANG L, ZHOU B, et al. Hybrid integration of wearable devices for physiological monitoring[J]. Chemical Reviews, 2024, 124(18): 10386-10434.
[6]LI M, CHEN T, LIU W, et al. A highly integrated sensing paper for wearable electrochemical sweat analysis[J]. Biosensors and Bioelectronics, 2021, 174: 112828.
[7]ZHANG Y, WANG L, ZHAO Y, et al. Advances in wearable fiber-shaped lithium-ion batteries[J]. Advanced Materials, 2016, 28(22): 4524-4531.
[8]HE J, LI C, ZHANG X, et al. From one-dimensional to three-dimensional, the criss-crossed fiber material forged a high-performance lithium-sulfur battery[J]. Chemical Engineering Journal, 2024: 153126.
[9]LU L, HU Y, DAI K. The advance of fiber-shaped lithium ion batteries[J]. Materials Today Chemistry, 2017, 5: 24-33.
[10]MO F, CHEN J, ZHOU G, et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties[J]. Advanced Materials, 2020, 32(5): 1902151.
[11]ZHOU Y, WANG C, LU W, et al. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries[J]. Advanced Materials, 2020, 32(5): 1902779.
[12]ZHANG C, LV W, ZHOU G, et al. Flexible fiber and fabric batteries[J]. Advanced Materials Technologies, 2018, 3(10): 1700302.
[13]LI C, LIU H, ZHANG X, et al. Polymers for fiber batteries[J]. Macromolecules, 2025.
[14]JAIN R, LING C, ZHANG M, et al. Nanostructuring versus microstructuring in battery electrodes[J]. Nature Reviews Materials, 2022, 7(9): 736-746.
[15]HE J, LU W, CHEN H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 2021, 597(7874): 57-63.
[16]KO G, PARK S, LEE J, et al. Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries[J]. Energy Storage Materials, 2023, 60: 102840.
[17]WANG L, CHEN B, LIU J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-6602.
[18]LIN C, ZHANG X, WANG Y, et al. Structural understanding for high-voltage stabilization of lithium cobalt oxide[J]. Advanced Materials, 2024, 36(6): 2307404.
[19]LIU H J, WANG G X, PARK J, et al. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53(22): 6497-6503.
[20]WEI J, ZHANG L, WANG X, et al. Double coated LiF/PAN lithium cobaltate cathode material to achieve high voltage and high cycling stability[J]. Journal of Alloys and Compounds, 2025: 181607.
[21]WANG B, BATES J B, HART F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Journal of The Electrochemical Society, 1996, 143(10): 3203-3213.
[22]LIAO M, YE L, ZHANG Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method[J]. Nature Nanotechnology, 2022, 17(4): 372-377.
[23]CHONG Y W, LEE B K, KIM K, et al. Energy harvesting for wearable devices: A review[J]. IEEE Sensors Journal, 2019, 19(20): 9047-9062.
[24]ARIYOSHI K, YUZAWA K, YAMADA Y. Reaction mechanism and kinetic analysis of the solid-state reaction to synthesize single-phase Li2Co2O4 spinel[J]. The Journal of Physical Chemistry C, 2020, 124(15): 8170-8177.
[25]KOH K Y, YANG Y, CHEN J P. Critical review on lanthanum-based materials used for water purification through adsorption of inorganic contaminants[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(10): 1773-1823.
版权与开放获取声明
作为一本开放获取的学术期刊,所有文章均遵循 Creative Commons Attribution 4.0 International License (CC BY 4.0) 协议发布,允许用户在署名原作者的前提下自由共享与再利用内容。所有文章均可免费供读者和机构阅读、下载、引用与传播,EWA Publishing 不会通过期刊的出版发行向读者或机构收取任何费用。